Graph Kernels

graphkernels: R and Python packages for graph comparison

Mahito Sugiyama, Elisabetta Ghisu, Felipe Llinares-​Lopez, Karsten Borgwardt

graphkernels: R and Python packages for graph comparison  

Summary

R and Python packages for computing graph kernels, which include:

  • simple kernels between vertex and/or edge label histograms
  • random walk kernels (popular baselines)
  • Weisfeiler-​Lehman graph kernel (state-​of-the-art)
  • Shortest-​Path kernel
  • graphlet kernel

Code

R

Python

Reference

graphkernels: R and Python packages for graph comparison

Mahito Sugiyama, Elisabetta Ghisu, Felipe Llinares-​Lopez, Karsten Borgwardt
Bioinformatics 2018, 34 (3): 530-​532
Online  |  ETH Reserach Collection  |  Project page

Halting in Random Walk Kernels

Mahito Sugiyama, Karsten Borgwardt



Halting in Random Walk Kernels


Code

A fast C++ implementation of graph kernels is available at our GitHub repository here, which includes:

  • simple kernels between vertex and/or edge label histograms
  • random walk kernels (popular baselines)
  • Weisfeiler-​Lehman graph kernel (state-​of-the-art)

Datasets

The GraphML format of the graph datasets MUTAG, NCI1, NCI109, ENZYMES, and D&D is also available Download here (ZIP, 12 MB).

Publication

Halting in Random Walk Kernels

Mahito Sugiyama and Karsten Borgwardt
Advances in Neural Information Processing Systems 28 (NIPS 2015), 1639-​1647
Online  |  ETH Research Collection  |  Project page  |  GitHub

   

Contact  Karsten Borgwardt for questions.

Scalable kernels for graphs with continuos attributes


 Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, Karsten Borgwardt



 Scalable kernels for graphs with continuos attributes

Code and Datasets

The files are available at our GitHub repository here. They include

  • a MATLAB implementation of the GraphHopper kernel as proposed in [1],
  • an implementation of the propagation kernel as presented in [2], and
  • the datasets used in the papers.

Publications

[1]

Scalable kernels for graphs with continuous attributes

Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne and Karsten Borgwardt
Advances in Neural Information Processing Systems 26 (NIPS 2013), 216-​224
Online  |  ETH Research Collection  |  Project page  |  GitHub

[2]

Efficient graph kernels by randomization

Marion Neumann, Novi Patricia, Roman Garnett and Kristian Kersting
Lecture Notes in Computer Science 7523 "Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2012.", 378–393
Online

Weisfeiler-Lehman Graph Kernels


Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, Karsten Borgwardt



Weisfeiler-​Lehman Graph Kernels

Code

This zip (ZIP, 580 KB) archive contains Matlab scripts to compute various graph kernels for graphs with unlabeled or categorically labeled nodes, such as the random walk, shortest path, graphlet, several instances of Weisfeiler-​Lehman or other subtree kernels. For a more detailed list of available kernels please consult the README (3 KB) in the archive.

Datasets

Download the graph data sets MUTAG, NCI1, NCI109, ENZYMES, and D&D (all in Matlab format) as a zip (ZIP, 10.1 MB) or a tar.gz (GZ, 10.1 MB) archive. The archive also contains a README describing the data sets and explaining their usage. Download the Matlab scripts for the WL subtree, edge and shortest path kernels as a zip (ZIP, 8 KB) or a tar.gz (GZ, 4 KB) archive. This archive also contains a README explaining the usage of the scripts.

Publication

Weisfeiler-​Lehman Graph Kernels

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn and Karsten M. Borgwardt
Journal of Machine Learning Research (JMLR) 2011, 12: 2539−2561
Online | ETH Research Collection | Project page including code

    

Contact  Karsten Borgwardt for questions.

Graph Kernels


SVN Vishwanathan, Nic Schraudolph, Risi Kondor, Karsten Borgwardt



Graph Kernels

Code

The Matlab code can be found here (M, 8 KB).

Datasets

Download datasets in Matlab format (Data (MAT, 11.4 MB)).

Publication

Graph Kernels

SVN Vishwanathan, Nic Schraudolph, Risi Kondor and Karsten M. Borgwardt
Journal of Machine Learning Research (JMLR) 2010, 11: 1201−1242
Online  |  ETH Research Collection  |  Project page including code  

Contact  Karsten Borgwardt for questions.

Graph Kernels Survey

Introduction



Graph-​structured data are an integral part of many application domains, including chemoinformatics, computational biology, neuroimaging, and social network analysis. Over the last two decades, numerous graph kernels, i.e. kernel functions between graphs, have been proposed to solve the problem of assessing the similarity between graphs, thereby making it possible to perform predictions in both classification and regression settings. Our review covers existing graph kernels, their applications, software plus data resources, and an empirical comparison of state-​of-the-art graph kernels. 



Code

The code used for our experiments is available on GitHub.  

Dataset

Our paper used datasets from the TUDortmund benchmark datasets for graphs repository. The repository has since been migrated to www.graphlearning.io.

Figures

The visualizations of the graph kernels used in the paper are available as a PDF here (PDF, 2.8 MB).

Contributors

Karsten Borgwardt
Elisabetta Ghisu (alumna)
Felipe Llinares-​López (alumnus)
Leslie O'Bray 
Bastian Rieck (alumnus)

References

Graph Kernels: State-​of-the-Art and Future Challenges

Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-​López, Leslie O'Bray, and Bastian Rieck
Foundations and Trends® in Machine Learning 2020, 13 (5-6): 531-​712.
Online  |  Project page  |  arXiv

Go to Editor View