Checkpoints bei der Zellteilung - Neues Kontrollelement entdeckt / Möglicher Ansatz für eine Krebstherapie

7. Oktober 2002

Pro Sekunde ereignen sich im menschlichen Organismus mehrere Millionen Zellteilungen. Diese schier unglaubliche Zahl verdeutlicht, wie wichtig es für den Organismus ist, einen reibungslosen Ablauf dieses Prozesses zu gewährleisten. In allen Lebewesen verfügen Zellen daher über entsprechende Kontrollmechanismen im Rahmen der Zellteilung. Werden diese Kontrollmechanismen außer Kraft gesetzt, so kommt es häufig zur Tumorbildung. Wissenschaftlern vom Max-Planck-Institut für Biochemie ist es jetzt gelungen, ein Kontrollelement zu identifizieren, das integrativer Bestandteil des so genannten "Spindel-Checkpoints" ist. Wird das Protein, von den Wissenschaftlern Hec1 genannt, zusammen mit anderen Kontrollelementen inaktiviert, so kommt es zu dramatischen Fehlern bei der Zellteilung. Die Forscher um Prof. Erich A. Nigg haben ihre Ergebnisse jetzt in Science (27. September 2002) veröffentlicht.

Ein Mensch besteht aus rund 100.000 Milliarden Zellen. Sie alle sind durch Teilung aus einer einzigen befruchteten Eizelle hervorgegangen. Viele dieser Zellen haben nur eine kurze Lebensdauer und müssen ständig ersetzt werden: So werden im menschlichen Körper jede Sekunde rund drei Millionen Blutzellen neu gebildet. Ohne kontrollierte Zellteilung, die sogenannten Mitose, wäre das nicht möglich. Während der Mitose muss die gesamte genetische Information, die DNA, zu gleichen Teilen an die Tochterzellen weitergegeben werden. Dabei muss gewährleistet sein, dass jede der beiden neu entstehenden Zellen nur eine einzige Kopie von jedem der 23 menschlichen Chromosomenpaare erhält. Um dies zu erreichen, wird zu Beginn der Mitose der so genannte Kernspindelapparat aufgebaut, der aus einem Netzwerk an Fäden, den sogenannten Mikrotubuli, besteht. Mikrotubuli sind hochgradig dynamische Strukturen: Durch Hinzufügen oder Entfernen der sie aufbauenden Einzelbausteine, der Tubuline, können die Einzelfäden wachsen oder schrumpfen. Das Umschalten zwischen diesen beiden Zuständen ist ein rein stochastischer Prozess, der aber bei der Zellorganisation eine ganz entscheidende Rolle spielt.

Nur mit Hilfe der Mikrotubuli können die Chromosomenhälften (auch Schwesterchromatiden genannt) bei der Zellteilung voneinander getrennt werden; dabei bewegen sie sich zu den entgegengesetzten Zellpolen und werden so auf die zwei sich bildenden Tochterzellen verteilt. Sind einzelne Chromatiden nicht gebunden, so kommt es zu einer ungleichmäßigen Verteilung, was fatale Folgen für den Organismus haben kann. Um derartige Fehler zu vermeiden, verfügt die Zelle über ein entsprechendes Kontrollsystem. Es ist der sogenannte "Spindel-Checkpoint": Er verzögert die Trennung der Schwesterchromatiden solange bis sie alle mit Mikrotubuli verknüpft sind. In den vergangenen Jahren konnten zahlreiche "Checkpoint"-Komponenten in ganz unterschiedlichen Organismen identifiziert werden - sie alle sind im Bereich der Kinetochore lokalisiert. Hierbei handelt es sich um spezifische Andockstrukturen, die unter anderem die Mikrotubuli einfangen und stabilisieren. Erst die erfolgreiche Verknüpfung des letzten Kinetochors mit Mikrotubuli führt, so vermuten die Wissenschaftler, zum Erlöschen des blockierenden "Spindel-Checkpoint"-Signals und zur Freigabe des weiteren Mitoseablaufs.

Die Max-Planck-Wissenschaftler Silvia Martin-Lluesma, Volker Stucke und Erich A. Nigg haben neue Einblicke in die Funktionsweise des "Spindel-Checkpoints" in menschlichen Zellen gewonnen. Sie konnten zeigen, dass ein Protein, Hec1 genannt, für die Verknüpfung bestimmter Enzyme, wie der Mps1 Kinase, und anderer Proteinkomplexe (MAD1/MAD2) mit den Kinetochoren notwendig ist. Das Fehlen dieses Proteins verhindert die Ansammlung der Chromosomen in der Mitte zwischen den Zellpolen und verursacht damit eine dauerhafte Aktivierung des "Spindel-Checkpoints", das heißt die Zelle verharrt in einem bestimmten Mitosestadium und der weitere Ablauf der Mitose ist zunächst unterbrochen. Das Fehlen von Hec1 zusammen mit MAD2 führt sogar zu einem katastrophalen Ausstieg aus dem gesamten Mitoseprogramm. Diese Erkenntnis, zusammen mit der Hypothese, dass in vielen Krebszellen vermutlich der "Spindel-Checkpoint" in seiner Funktion beeinträchtigt ist, macht Hec1 zu einem attraktiven Ansatzpunkt (die Forscher sprechen von einem medizinischen Target), um ganz gezielt jene Zellen zu entfernen, die Defekte im "Spindel-Checkpoint" aufweisen. Das könnte, so die Ansicht der Forscher, ein ganz neuer Ansatz für eine Krebstherapie sein.

Originalpublikation:

Martin-Lluesma S, Stucke V M, Nigg E A (2002): Role of Hec1 in Spindle Checkpoint Signaling and Kinetochore Recruitment of Mad1/Mad2. Science Vol 297, 27 September 2002.

Weitere Informationen erhalten Sie von:

Prof. Dr. Erich A. Nigg

Abteilung für Zellbiologie

Max-Planck-Institut für Biochemie

Am Klopferspitz 18a

82152 Martinsried

E-Mail. nigg@biochem.mpg.de

Zur Redakteursansicht